HOPS interacts with Apl5 at the vacuole membrane and is required for consumption of AP-3 transport vesicles.

نویسندگان

  • Cortney G Angers
  • Alexey J Merz
چکیده

Adaptor protein complexes (APs) are evolutionarily conserved heterotetramers that couple cargo selection to the formation of highly curved membranes during vesicle budding. In Saccharomyces cerevisiae, AP-3 mediates vesicle traffic from the late Golgi to the vacuolar lysosome. The HOPS subunit Vps41 is one of the few proteins reported to have a specific role in AP-3 traffic, yet its function remains undefined. We now show that although the AP-3 delta subunit, Apl5, binds Vps41 directly, this interaction occurs preferentially within the context of the HOPS docking complex. Fluorescence microscopy indicates that Vps41 and other HOPS subunits do not detectably colocalize with AP-3 at the late Golgi or on post-Golgi (Sec7-negative) vesicles. Vps41 and HOPS do, however, transiently colocalize with AP-3 vesicles when these vesicles dock at the vacuole membrane. In cells with mutations in HOPS subunits or the vacuole SNARE Vam3, AP-3 shifts from the cytosol to a membrane fraction. Fluorescence microscopy suggests that this fraction consists of post-Golgi AP-3 vesicles that have failed to dock or fuse at the vacuole membrane. We propose that AP-3 remains associated with budded vesicles, interacts with Vps41 and HOPS upon vesicle docking at the vacuole, and finally dissociates during docking or fusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of a membrane curvature–sensing motif switches function of the HOPS subunit Vps41 in membrane tethering

Tethering factors are organelle-specific multisubunit protein complexes that identify, along with Rab guanosine triphosphatases, transport vesicles and trigger their SNARE-mediated fusion of specific transport vesicles with the target membranes. Little is known about how tethering factors discriminate between different trafficking pathways, which may converge at the same organelle. In this pape...

متن کامل

How Vps41 HOPS between tethering functions

Cells find an alternative exit M ammalian cells can arrest and differentiate even in the complete absence of Rb family proteins, Wirt et al. reveal. The retinoblastoma (Rb) tumor suppressor and its close relatives p107 and p130 arrest cells in G1 by binding and inactivating E2F transcription factors, blocking transcription of E2F target genes required for cell cycle progression. The Rb family i...

متن کامل

The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole.

The interaction between v-SNAREs on transport vesicles and t-SNAREs on target membranes is required for membrane traffic in eukaryotic cells. Here we identify Vti1p as the first v-SNARE protein found to be required for biosynthetic traffic into the yeast vacuole, the equivalent of the mammalian lysosome. Certain vti1-ts yeast mutants are defective in alkaline phosphatase transport from the Golg...

متن کامل

یافته های تازه درباره سلولهای پاریتال معده

During the last five years the recognition of ionic channels in the parietal cells of stomach and acid chloride mechanisms of secretion by these cells has become totally clear by the "Patch Oamp" technique. The apical cytoplasm in the oxyntic cells are in the form of vesicles where membranes contain H+, K+ -ATPase pump. Stimulation causes fusion of these tubular vesicles with the cell membran o...

متن کامل

Endosome-lysosome fusion.

The delivery of endocytosed cargo to lysosomes occurs through kissing and direct fusion of late endosomes/MVBs (multivesicular bodies) and lysosomes. Live-cell and electron microscopy experiments together with cell-free assays have allowed us to describe the characteristics of the delivery process and determine the core protein machinery required for fusion. The ESCRT (endosomal sorting complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 20 21  شماره 

صفحات  -

تاریخ انتشار 2009